Image: Stegosaurus confronts Tyrannosaurus, from Walt Disney's Fantasia. Such anachronistic views of paleontology could never form the basis of peer-reviewed literature, could they?
A new study (Carbone, Turvey &Bielby, 2011) suggests T. rex could not have been a pure scavenger.
Yeah, I know. This is already the universally accepted position of modern paleontologists. Of course T. rex scavenged if it could, but there is ample reason to think (and ample fossil support backing this up) that it hunted as well. Even the originator of the scavenging thoery, Jack Horner, has basically admitted that he only came up with it as a way to get young people to think critically about their own preconceptions (obviously, he has never met any young paleontology fans. I'd have given up that strategy after I witnessed my first T. rex vs. Spinosaurus debate).
However, as Denver Fowler pointed out on the DML today, drawing an obvious conclusion is the least of the paper's problems.
I recently participated in at least two paleoart discussion threads in which really awesome artists showed off some mind-blowingly fantastic paintings depicting the Jehol biota. I know first hand that both artists are completely on the ball and know their stuff. But both made common errors in the often neglected field of biostratigraphy.
In one, a Sinornithosaurus watches as two Microraptor glide down from the trees. These are two similar animals from around the same time and place. However, there is no evidence that they ever met. All known fossils of Microraptor come from the Jiufotang formation, dated to 120 million years ago, plus or minus 700k years. The youngest Sinornithosaurus fossils are from the upper Yixian formation, dated to around 122 million years ago. The timespan and environment are grossly similar, but 2 million years is still a long time in a world where most dinosaur species, if not genera, don't span more than a couple million years (and the ones that do are probably egregiously over-lumped, like Iguanodon).
Another painting portrayed a Yixian formation scene with Yixian ornithopods and Yixian insects being fed on by Jeholopterus, a pterosaur which lived in the Daohugou biota, in beds dating to at least 150 million years ago, a full 25 million years before the Yixian faunas existed. The error here was probably based on a confused history of dating the formations (old sources placed the Yixian in the late Jurassic), and many sources, both professional and popular, which tended to conflate the various Chinese feather-preserving formations into one amorphous pseudo-fauna.
Artistic depictions throwing together prehistoric animals from disparate times are obviously nothing new. Walt Disney Pictures has done this at least twice, first and most famously in Fantasia (Stegosaurus meets T. rex meets Pteranodon), and later and more flagrantly in Dinosaur (I can't think of any two animals in that movie that were actually contemporaries, and many didn't even live together on the same continent).
This is somewhat excusable when it's done for the sake of art (as long as that art isn't passed off as being scientifically rigorous). But this kind of disregard for, or generalization of, biostratigraphy can creep into science and completely foul up your results.
In Carbone et al. 2011, the authors attempt to calculate the amount of potential carcasses that would have been available to scavenging Tyrannosaurus rex in its environment to make their case. Their lists of T. rex contemporaries are reproduced in part below:
Species and body masses of carnivorous non-avian theropod dinosaurs of Late Cretaceous North America
Dromaeosaurus albertensis
Richardoestesia gilmorei
Richardoestesia isosceles
Saurornitholestes
Velociraptor sp.
Troodon formosus
Chirostenotes elegans
Chirostenotes pergracilis
Nanotyrannus lancensis
Albertosaurus sarcophagus
Tyrannosaurus rex
Species and body masses of herbivorous dinosaurs of Late Cretaceous North America
Parksosaurus warreni
Prenocephale edmontonensis
Ornithomimus velox
Struthiomimus sp.
Thescelosaurus garbanii
Thescelosaurus neglectus
Leptoceratops gracilis
Montanoceratops sp.
Pachycephalosaurus wyomingensis
Edmontosaurus annectens
Edmontosaurus regalis
Edmontosaurus saskatchewanensis
Lambeosaurus sp.
Parasaurolophus walkeri
Edmontonia rugosidens
Ankylosaurus magniventris
Triceratops horridus
Alamosaurus sanjuanensi
The authors state, "our species list is treated as representing a consistent sympatric faunal unit across this region for the purposes of analysis." But they absolutely don't represent that.
If you have even a little bit of a handle on Late Cretaceous biostratigraphy, or the paleoecology of T. rex, you may notice a few problems with these lists. Namely, the fact that they are complete messes, incorporating erroneous or outdated taxonomic assignments or over-generalizations of the geologic column.
This kind of data crunching would require taxa to be broken down on an environment-by-environment basis. That is, in order to be meaningful, all included taxa have to be demonstrated to be contemporaries. Most of the taxa in those lists were not, or can't be said to have been with any confidence.
To be fair, some of the mistakes are due to very new research, some of which has only appeared in abstracts or mentioned briefly in papers. For example, while Edmontosaurus regalis is widely reported from the late Maastrichtian Hell Creek and Lance formations, this is mainly by default, skeletons that are not identifiable to the species level. Ongoing stratigraphic and taxonomic work by Nicolas Campione has shown that E. regalis was actually not a contemporary of E. annectens, and specimens assignable to that species are only known from lower strata. The validity of E. saskatchewanensis, which is from the same stratographic level as T. rex, is pretty dubious. E. annectens is its likely synonym.
Parasaurolophus is known exclusively from the Campanian-age Dinosaur Park Formation, over five million years before the earliest known T. rex fossils. Same goes for Lambeosaurus. While the former was tentatively identified in the Hell Creek by Sullivan & Williamson (1999), this was based on very fragmentary remains that almost certainly belong to Edmontosaurus instead. Montanaceratops is from the St. Mary River Formation, dated to the early Maastrictian and also pre-dating T. rex.
Some cases are even more nuanced. Alamosaurus did coexist with T. rex, but not with many of the other listed species. Current indications are that the southern part of North America during the late Maastrichtian supported a different fauna from the north, comprised many of species which are related to, but distinct from, their northern counterparts. Alamosaurs, for example, did not coexist with Triceratops, but Ojoceratops (assuming they're distinct). It didn't coexist with Torosaurus latus (which the authors apparently lump with Triceratops), but with "Torosaurus" utahensis. Indications are that these beds are a bit earlier than the late Maastrichtian as well, so while Alamosaurus lived alongside Edmontosaurus, it was E. regalis rather than E. annectens.
The carnivores don't fare much better. Most are tooth taxa, like Troodon (another Dinosaur Park critter from the Campanian). While "Troodon" teeth are known from the same beds as T. rex, they're almost certainly not Troodon formosus. The same goes for Dromaeosaurus. However, these are taxonomic issues, not biostratigraphic ones, and don't really affect species count--whatever we name them, there were at least one troodontid and at least two dromaeosaurids present (though the authors erroneously list both Velociraptor and Saurornitholestes, based on the same specimens, first referred to the former and then the later, both incorreclty). Not so for the inexplicable inclusion of Albertosaurus. I can figure out where these other misplaced species came from, but I don't know of any albertosaur remains having been reported from Lancian-age deposits. Anybody? Either way, it's almost certainly an error (as is making Nanotyrannus a distinct taxon, but that's another story).
So you can see why failing to understand which dinosaurs lived together, specifically, can have major implications for actual science. This kind of paper also illustrates why it's a bad idea to keep non-diagnostic genera around as nomina dubia and not sink them into their better known, probably-synonymous counterparts or simply designate neotypes from the good material. These authors avoided pitfalls like including Thescelosaurus infernalis (=T. sp.), Manospondylus gigas (=Tyrannosaurus rex), Aublysodon molnari (=Tyrannosaurus rex), Thespesius occidentalis (=Edmontosaurus annectens), Trachodon mirabilis (=Edmontosaurus annectens), or Agathaumas sylvestris (=Triceratops horridus), but those taxa aren't doing science any favors by cluttering the playing field.
Here's my preliminary attempt to clean up their faunal lists, based on a Lancian-age, northern ecosystem: (updated thanks to additional information provided by Mickey Mortimer in the comments. note that I'm following the authors in not including avialans)
Dromaeosaurinae sp.
Zapsalis abradens
Richardoestesia gilmorei
Richardoestesia isosceles
Troodontidae indet. spp. (multiple species)
Pectinodon bakkeri
Paronychodon sp.
Avimimidae sp.
Chirostenotes elegans
Chirostenotes elegans
Chirostenotes? sp.
Tyrannosaurus rex (=Manospondylus gigas)
Struthiomimus sedens
Tyrannosaurus rex (=Manospondylus gigas)
Struthiomimus sedens
Ornithomimus velox
Ornithomimidae sp. (="Orcomimus")
Dromeiceiomimus sp.
Alvarezsauridae sp.
Therizinosauridae sp.
Thescelosaurus garbanii
Thescelosaurus neglectus
Leptoceratops gracilis
Pachycephalosaurus wyomingensis
Edmontosaurus annectens (=Thespesius occidentalis)
Edmontonia schlessmani (=Denversaurus schlessmani)
Ankylosaurus magniventris
Torosaurus latus?
Triceratops horridus (=Agathaumas sylvestrus?)
References:
* Campione, N.E. (2009). "Cranial variation in Edmontosaurus (Hadrosauridae) from the Late Cretaceous of North America." North American Paleontological Convention (NAPC 2009): Abstracts, p. 95a.
Thescelosaurus garbanii
Thescelosaurus neglectus
Leptoceratops gracilis
Pachycephalosaurus wyomingensis
Edmontosaurus annectens (=Thespesius occidentalis)
Edmontonia schlessmani (=Denversaurus schlessmani)
Ankylosaurus magniventris
Torosaurus latus?
Triceratops horridus (=Agathaumas sylvestrus?)
References:
* Campione, N.E. (2009). "Cranial variation in Edmontosaurus (Hadrosauridae) from the Late Cretaceous of North America." North American Paleontological Convention (NAPC 2009): Abstracts, p. 95a.